Lesson Notes By Weeks and Term - Senior Secondary School 2

GRAPHICAL SOLUTION OF INEQUALITY IN TWO VARIABLES

SUBJECT: MATHEMATICS

CLASS:  SS 2

DATE:

TERM: 2nd TERM

REFERENCE BOOKS

  • New General Mathematics SSS2 by M.F. Macraeetal.
  • Essential Mathematics SSS2 by A.J.S. Oluwasanmi. 

 

 
WEEK TWO        DATE: ___________

TOPIC: GRAPHICAL SOLUTION OF INEQUALITY IN TWO VARIABLES

CONTENT

    -Revision of Linear Equation in Two Variables.

    -Graphical Representation of Inequalities in Two Variables.

    -Graphical Solution of Simultaneous Inequality in Two Variables.

 

Revision of Linear Equation in Two Variables.

Examples

Solve and represent the solution on graph

  1. x + y =2                                                        

Choosing values for x:let  x=0,1,2

 y=2-x 

x

0

1

2

2

2

2

2

-x

-0

-1

-2

y

2

1

0



  1.   5x + 2y = 10             0    1    2    3        x

 

Using intercept method

              When x = 0

                 5(0) + 2y = 10

                            2y = 10

                             y = 5

‬

              When y  = 0

                 5x + 2(0) = 10

                       5x     = 10

                         x = 2

                  (0,5) (2, 0)

                            0    1    2    3    4    x

  1.   Draw the linear graph of y = 2

 

   

2

       




        0    1    2            x

 

4.Draw  the  linear  graph  of  x  = 3

    y

    4 –

 

    2 –

 

    0            3

   

 

5.Draw the graph of 2x + y =3 using intercept method

When y = 0

    2x=3       

             x = 3/2 = 1.5

When x =0

y = 3                                                                                                                                                             (0, 3) (1.5  , 0)   

 

        y

 

        3 –     (0, 3)



                  (1.5, 0)

               

            1    2            x



Evaluation

Sketch the graph  of  the functions:

1) 4x + 3y = 12

2)  y  -  x  = 5 

   

GRAPHICAL REPRESENTATION OF INEQUALITIES IN TWO VARIABLES

Example 1:Show  on  a  graph  the  region  that  contains  the  set   of   points for  which

      2x + y ≤ 3                  y   

     When x = 0                (0, 3)

    2(0) + y = 3           

    y= 3

   When y = 0

2x + 0 = 3

    2x = 3                                (1.5. 0)

    x= 3/2 = 1.5            0                            x

  (0, 3) (1.5, 0)

 

The  unshaded  region  satisfies  the  inequalities.

 

Note: The continuous thick line is used in joining point when the symbols  ≥ or  is used and when < or > is used broken line or dotted line is used. 

 

Check: When    x = 2,  y=1

2 x + y < 3

2 (2) + 1< 3

4 + 1 < 3

4 + 1 < 3

5 < 3 (No)

Therefore the other side is the region that satisfies the inequality.

 

Example 2                            y

2x + 3y > 6                   

When x = 0                        (0, 2)

3y  =  6

     y=2

When y = 0

    2x=6                -2    -1    0    1    2      (3, 0)        x

x = 3

( (0, 2)  (3, 0)



The  shaded  region  satisfies  the  inequality

 

Example 3

y< 2

            y



            2



            0                        x

 

Theunshaded  region  satisfies  the  inequalities

 

Evaluation 

Represent  the  following   functions  graphically.

  1. 4x + 3y > 12
  2. x +y ≥ 2

Shade the region that does not satisfy the inequality.

 

Graphical Solution of Simultaneous Inequality

Example I

Show on a graph the region which contains the solutions of the simultaneous inequalities

i    2x +3y < 6

ii    y – 2x ≤ 2

iii    y >  - 2                                y

 

Solution:                        2x + 3y < 6    6 -         y – 2x 2

2x + 3y < 6                        when  y= 0   

2x + 3y < 6                          2x = 6                    4 -

When x = 0                           x=3

     3y = 6                                2 – A

     Y = 2

 

                            -3     -2     -1     0       1        2    3      4

Coordinates:      (0, 2) (3,0)

                                C        -2                    D

(ii) y – 2x ≤ 2                                            y > -2

When  x = 0            When y = 0                -4

y = 2                -2x = 2           

                                                   x = -1

                       

Coordinates;      (0, 2) (-1, 0)

 

(iii)    y>  - 2          (0,-2)

 

The unshaded region           ABC satisfies all the inequalities.

Any coordinate within the satisfied region satisfies all the inequalities e.g

(x, y) = (-1,-1) (0,-1) (1,-1) (2,-1)

(3,-1), (-1,0) (0,0) (1,0) (2,0) (0,1) (1,1)

 

Example 2

Solve graphically the simultaneous inequality and shade the region that does not satisfies the inequality.

-x + 5y≤ 10

3x -4y 8

and y > -1

 

Solution

           -x + 5y10

When  x=0

            5y = 10

            y = 2

         When y = 0

         -x = 10

          x =-10

          x = -10

       Coordinates:   (0,2) (-10, 0)

                  3x                                 4

Solution

           -x + 5y ≤ 10                            3

            5y = 10

            y = 2                                2

         When y = 0

         -x = 10                                1

          X =-10

          X = -10                -10      -8     -6     -4        -2       0      2     4      6       8      10

          (0,2) (-10, 0)

                  3x – 4y ≤ 8                        -1

                 When x  = 0

                  -4y =8                            -2

                     y = -2

When y = 0                                -3

    3x = 8

      x = 8

            3

x = 2  2/3 

(0, -2) (2 2/3   , 0)

 

(ii)     y> -1

Coodinates:   (-1,0)

 

Evaluation

Solve  graphically  for  integral  values  of  x  and  y

y ≥ 1 , x – y ≥ 1 and 3x + 4y ≤ 12

 

GENERAL EVALLUATION/REVISION QUESTIONS

Solve graphically the simultaneous inequalities

  1. If  (i) x + 3y≤ 12 (ii) y ≥-1 (iii) x > -2 for integral values of x and y

2.y  is  such  that   4y – 7 ≤ 3y and 3y≤5y + 8   

a)What  range  of  values  of  y  satisfies both  inequalities?

b)Hence  express  4y - 7 ≤  5y + 8 in the form a ≤ y ≤ b,where a and b are both integers

3.If 65x2+x-10=0 find the values of x

  1. Solve the equations 2x+y=1 and 25x-y = 125 simultaneously

 

READING ASSIGNMENT

New General Mathematics SSS2, pages 98-111, exercise10e. 

 

WEEKEND ASSIGNMENTS

 Objectives

1.Which of the following number line represents the inequality 2 ≤ x < 9

 

(a)                  (b)                  (c)

    0        9        0                      9        0        9          

(d)

 

    0        9   

 2.Form an inequality for a distance “d” meters which is more than 18cm but not more 

than 23m.

    (a) 18 ≤d ≤23     (b) 18< d ≤ 23    (c) 18 ≤ d < 23     (d) d< 18 or d > 23

  1. Interprete the inequality represented on the number line



        -4        0            5

    (a) -4 < x d5    (b) -4 dx< 5    (c) -4 < x < 5    (d) -4 x d5

  1. Solve the inequality 1 (2x-1) < 5

                                             3                         

(a) x< -6     (b)  x < 7     (c) x < 8    (d) x  <  16

5.Which of the following could be the inequality illustrated on the shaded portion of  the of  the  sketched   graph  below.

            y

                  (0, 3)




                      (1, 0)

                                x

(a)y ≤ x + 3     (b)y   3x + 2   (c) –y ≤ 3x – 3     (d) –y ≤ 3x + 3

   

Theory

Show  on  a  graph  the  area  which  gives  the  solution  set  of  the  inequalities  shading  the  unrequired  region.

 

  •  y  ≤ 3, x – y     1 and    4x + 3y ≥ 12

 

  1. y  - 2x ≤ 4, 3y + x ≥ 6  and y ≥ x-9





© Lesson Notes All Rights Reserved 2023