Lesson Notes By Weeks and Term - Senior Secondary School 1

Introduction of circle and its properties

SUBJECT: MATHEMATICS

CLASS:  SS 1

DATE:

TERM: 2nd TERM

REFERENCE BOOK

  • New General Mathematics SSS 1 M.F. Macrae et al 
  • WABP Essential Mathematics For Senior Secondary Schools 1 A.J.S Oluwasanmi

 

 
WEEK NINE

TOPIC: Introduction of circle and its properties

  • Introduction of circle and its properties 
  • Calculation of length of arc and perimeter of a sector 
  • Area of sectors and segments. Area of triangles 

(a) Introduction of circle and its properties 

Parts of a circle: The figure below shows a circle and its parts.














The centre is the point at the middle of a circle. The circumference is the curved outer boundary of the circle. An arc is a curved part of the circumference. A radius is any straight line joining the centre to the circumference. The plural of radius  is radii. A  chord is any straight line joining two points on the circumference. A diameter is a straight line which divides the circle into two equal parts or a diameter is any chord which goes through the centre of the circle.

Region of a circle

The figure below shows a circle and its different regions.

A sector is the region between two radii and the circumference. A semi-circle is a region between a diameter and the 

                                                Semi – circle 













                                                Segment 

circumference i.e half of the circle. A segment is the region between a chord and the circumference.

 

EVALUATION

Draw a circle and show the following parts on it. Two radii, a sector, a chord, a segment, a diameter, an arc; label each part and shade any regions.

 

(b) Calculation of length of arc and perimeter of a sector 

Given a circle centre O with radius r. The circumference of the circle is 2Пr. Therefore, in the figure below, the length, L, of arc XY is given as:

L =   θ x  2Пr

       360o














Where θ is the angle subtended at the centre by arc XY and r is the radius of the circle.

 

Also,

The perimeter of Sector XOY = r + r + L

Where 

 

L = length of arc XY 

= θ     X    2 Пr

  360

 

Then

Perimeter of 

Sector XOY            =       r  +  r  + L

                                = 2r  +   θ     x    2 Пr

            360o

 

EXAMPLES

 

  • An arc of length 28cm subtends an angle of 24 at the centre of a circle. In the same circle, what angle does an arc of length 35cm subtend?

 

  1. Calculate the perimeter of a sector of a circle of radius 7cm, the angle of the sector being 108o, if П is 227.

 

Solutions

  1.   L =    θ   x    2 Пr

               360

When L = 28cm ,  θ =  240, r = ?       

Then

 

    L =  θ    x    2 Пr

                    360o

 

28 = 24   x    2 x 22  x r

        3600            7

Cross-multiply:

24  x  44 x r  =  28 x  360 x  7

 

                  15

       7         60

r = 28  x  360  x  7 cm

24x44

       4         11

 

r  =  49  x   15  cm

                11

r = 735 cm

      11

Also 

When L = 35cm, r = 735 cm

                                     11

θ  = ?

 

Then 

L =  θ   x  2 Пr

  360o

 

35 = θ   x 2  x  22  x  735

      360              7        11

 

Then,

Cross multiply

  1. x  360 x 7 x 11 = θ x 44 x 735

1                 11

35 x 360 x 77    =  θ

 44     x       735

        4        105  3

 

360    =   θ  = 300

12

Thus, when the length of the arc is 35cm, the angle subtended at the centre is 300

  1. Perimeter of a sector of a circle = 2r + θ   x 2 Пr

                                                360o

 

=  2 x7 + 108   x 2 x 22 x 7

            360             7  1

          3

= 14 +  108  x  44cm

    360 10

= 14 + 3 x 44 cm

              10

=  14 + 132 cm

             10 

=  14 + 13.2 cm

= 27.2 cm

 

EVALUATION

  1. A piece of wire 22cm long is sent into an arc of a circle of radius 4 cm. What angle does the wire subtend at the centre of the circle?
  2. Calculate the perimeter of a sector of a circle of radius 3.5cm, the angle of the sector being 1620 if П is 22

7.

 

Length of chord and perimeter of a segment.

Consider a circle centre O with radius r

 

               

               

                                       

               

 

           






                   

                           

 

If OC is the perpendicular distance from O to chord AB and angle

AOB = 2 θ, then the length of chord AB can be found as follows:

           








       

 

In right-angled triangle OCA

 

AC    =    Sin  θ

  r

Cross multiply:

__

AC = r Sin θ

Since

AB  = 2  x AC

AB    =  2r  Sin θ

 

Where

r = radius of the circle

θ =Semi Vertical angle of the sector i.e half of the angle subtended at the centre by arc AB.

Also

The perimeter of segment ACBD    = Length of chord AB + length of arc ADB

= 2r Sin θ + θ   x 2 Пr

    360o

Example

In a circle of radius 6 cm, a chord is drawn 3cm from the centre. 

(a) Calculate the angle subtended by the chord at the centre of the circle.

 

(b) Find the length of the minor arc cut off by the chord

 

  1. Hence find the perimeter of the minor segment formed by the chord and the minor arc.

 

Solution





  1. Let the required angle 

    = AOB = 2 θ

Where

θ  = Semi vertical angle of the sector.

 

Then

Cos θ = 3cm = 1

              6cm    2

 

Cos θ = 0.5000

    θ = Cos-1  0.5000

    θ   = 600

-: Required angle = 2 θ

            = 2 x 600

            = 1200

 

b Length of minor arc ADB =θ x 2 Пr

     1          2              3600

= 120 x 2 x 22 x 6cm

360       7

3

     1

= 4 x 22cm

       7

= 88cm = 12 4cm

     7               7

  1. Perimeter of minor segment ACBD

= Length of + length of arc

Chord AB       ADB

= 2r Sin θ + 1247cm

= 2 x 6 x sin600 + 1247cm

= 12 x Sin 600 + 1247cm

= 12 x 0.8660 + 12.5714cm

= 10.3920 + 12.5714cm

= 10.3920

12.5714

22.9634cm

= 22.96 cm to 2 places of decimal.

 

EVALUATION

  1. a. A chord 4.8cm long is drawn in a circle of radius 2.6cm. Calculate the distance of the chord from the centre of the circle.
  1. Calculate the angle subtended at the centre of the circle by the chord in Question 1(a) above
  2. Hence find the perimeter of the minor segment formed by the chord and the minor arc of the circle.

 

READING ASSIGNMENT

NGM SS BK 2, pg. 31,Ex2a, Nos.2,3,5.

 

(c) Area of sectors and segments. Area of triangles 

Area of sectors

Area of a sector of a circle is given by the formular;

 

Area of sector   θ    x  πr 2

360o

where    r = radius of the circle, θ = angle subtended at the centre by XY or angle of the sector












Examples

  1. Calcualte the area of sector of a circle which subtends an angle of 45o at the centre of the circle, diameter 28cm (π = 22/7).
  2. The area of a circle PQR with centre O is 72cm2. What is the area of sector POQ, if POQ  = 40o?

 

Solutions

  1. Since the diameter of the circle = 28cm 

         d  = 2r  = 28

where d = diameter and r = radius

thus 2r = 28

 2r     =  28   = 14cm

Area of sector =   θ    x    πr 2

                           360o

 45   x  22 x  ( 14 ) 2

     360       7

=  1/8  x 22/7  x 14 x 14  cm

         = 77cm2














Since the area  of the whole circle  PQR = 72cm2

 

Then 

Area of sector = θ    x    πr2

360o

But πr2=  Area of the whole circle PQR = 72cm2

:. Area of          =   40     x 72cm2

sector POQ         360o

    = 8cm2

Evaluation 

complete  the table below for areas of sectors of circles. make a rough sketch in each case.

 

Radius

Angle of sector

Area of sector 

a.14cm

-

462cm2

b. --

140

99cm2

Area of segments

A segments of a  circle is the area bounded by a chord and an arc of the circle.Considering the figure below, we have a major segment and a minor segment .















Given the diagram below: 

Area of the shaded segment= Area of sector POQ – Area of triangle POQ

= θ

360o   x πr2  -  ½ r2 sin θ








Where 

r = radius of the circle

θ = angle subtended by the sector at the centre

Π=  a constant = 22/7 





Examples

  1. calculate the area of the shaded segment of the circle shown below:















2.Calculate the  area of the shaded parts in the figure below. All dimensions are in cm and all arcs are circular.















Solutions

1  Area of the given shaded segment =θ   x  πr2  - 1/2r2 Sin θ

                                                              360o

    = 56/360  x 22/7  x ( 15 ) 2  - ½ x ( 15)2 sin 560

=  1/45  x 22 x 15 x 15  - ½ x 15 x 15 sin 56o

= 22 x 5  - ½ x 225 x sin 560

=  110  - ½ x 225 x 0.8290

=   110  - 225 x 0. 4145

=   110 – 93.2625cm2

=   110 – 93.2625cm2

=   16.7375cm2

 =  16.7cm2 to 3 s. f

 

2)










The arc in the given figure is part of a circle as shown in the figure above.  Thus area of given shaded segment   = Area of sector – area of triangle

 

    = θ x πr2 – ½ r2 sin θ

              360

= 90/ 360 x 22/7 x ( 14) 2 – ½  x (14) 2 sin 90o

=¼ x 22/7 x 14 x 14 – ½ x 14 x 14 x 1 

=  11 x 14 – 14 x 7 cm2

= 154  - 98cm2

= 56cm2

 

EVALUATION

Calculate the  area of the shaded parts in the figure below.  All dimensions are in cm and all arcs are circular.

 

  1.                                                                             b)









GENERAL EVALUATION 

  1. An arc of a circle radius 7cm is 14cm long. What angle does the arc subtend at the centre of the circle?
  2. An arc of a circle whose radius is 10cm subtends an angle 600 at the centre. Find the length of the arc. 
  3. In the diagram below, O is the centre of the circle of radius 20cm. Calculate: 
  1. The area of the minor segment PQ
  2. The area of the major segment PQ
  3. The perimeter of the minor segment. (take = 3.13)












READING ASSIGNMENT 

NGM SS BK1 Pages 134-139 Ex 12d Nos 6 and 9 139



WEEKEND ASSIGNMENT 

  1. Calculate the  area of a sector of a circle of radius 6cm which subtends an angle of 70o at the centre (π = 22/7)      A. 44cm2        B. 22cm2        C. 66cm2   D. 11cm2   E. 16.5cm2
  2. What is the angle subtended at the centre of a sector of a circle of radius 2cm if the area of the sector is 2.2cm2? (π = 22/7)A. 120o    B. 31 ½o   C. 43o D. 58o   E. 63o
  3. What is the radius of a sector of a circle which subtends 140o at its centre and has an area of  99m2?     A.    18m        27m        C 9m        E. 30m        E. 24m
  4. A sector of 80o is removed from a circle of radius 12cm What area of the circle is left?     A. 253cm2   B. 704cm2C 176cm2D. 125cm2 E. 352cm2π
  5. Calculate the area of the shaded segment of the circle shown in the figure below:

( π  = 22/7 )








  1. 10.45cm2 B. 20.90cm2C. 5.25cm2D. 19.0cm2E. 17.45cm2

 

THEORY

  1. The figure below shows the cross section of a tunnel. It is in the shape of a major segment of a circle of radius 1m on a chord of length 1.6m. Calculate: 
  1. the angle subtended at  the centreof the circle by the major arc correct to the nearest 0.10
  2. the area of the cross section of the tunnel correct to 2d.p.
  1. Calculate: (i) the area of the shaded segments in the following diagrams. (ii) The perimeter 

(Take 3.14)



                               






 

  • Radius            Angle at centre        Length of arc

 

A    21cm                ________            22cm

B    ____                108o                132cm



© Lesson Notes All Rights Reserved 2023