VECTOR and SCALAR QUANTITY, DISTANCE/DISPLACEMENT, SPEED/VELOCITY, ACCELERATION, DISTANCE/DISPLACEMENT - TIME GRAPH, SPEED/VELOCITY - TIME GRAPH
SUBJECT: PHYSICS
CLASS: SS 1
DATE:
TERM: 1st TERM
REFERENCE BOOKS
WEEK FIVE AND SIX
TOPIC: VECTOR and SCALAR QUANTITY, DISTANCE/DISPLACEMENT, SPEED/VELOCITY, ACCELERATION, DISTANCE/DISPLACEMENT - TIME GRAPH, SPEED/VELOCITY - TIME GRAPH
CONTENT
FOR WEEKS FIVE AND SIX
SCALAR & VECTOR QUANTITY
A scalar quantity is defined as a quantity that has magnitude only but no direction. Typical examples of scalar quantities are time, distance, speed, temperature, volume, work, power, electric potential etc. A scalar quantity or parameter has no directional component, only magnitude. For example, the units for time (minutes, days, hours, etc.) represent an amount of time only and tell nothing of direction. Additional examples of scalar quantities are density, mass, and energy.
A vector quantity is defined as a quantity that has both magnitude and direction. Typical examples of vector quantities are velocity, displacement, acceleration, force, momentum, moment, electric field intensity etc
POSITION
Position is referred to as the point in which an object can be located or the place object is found. The position of an object on a plane can be given by its co-ordinates, i.e., the signed distances of the point from two perpendicular axes, OX and OY
Y
X
Fig. 6.0 Cartesian co-ordinates
The – co-ordinates is called abscissa while the – co-ordinate is called ordinate. The co-ordinate is written first, before the – co-ordinates, i.e. (X,Y)
DISTANCE AND DISPLACEMENT
Distance: This is the gap between any two positions in space. It is denoted by S and measured in metre(m) it is a scalar quantity and is calculated as the product of average speed and time.
Thus, distance = average speed X time.
Displacement: This is the distance covered in a specific direction. it is a vector quantity measured in metre(m). The direction of motion of bodies can be found by using the compass.
Displacement = average velocity X time. It is denoted by X
The Use of Bearing to Indicate Direction and Displacement
The bearing of an object from the origin is the angle which it makes with the north pole in the clockwise sense. It is specified in two ways:
Fig. 6.1 cardinal points and their directions
SPEED AND VELOCITY
Speed: Speed is defined as the rate of change of distance moved in an unspecified direction or the rate of change of distance per unit time in an unspecified direction. It is measured in metre per second (m/s). It is a scalar quantity.
The mathematical expression of speed is
Average Speed: Average speed is defined as the ratio of the total distance travelled to the total time taken. It is a scalar quantity and measured in m/s or ms-1
This, average speed =
When a body covers equal distance in equal time intervals, no matter how small the time interval may be, it is said to be a uniform speed or constant speed.
Velocity: Velocity is defined as the rate of change of distance moved in a specific direction or the rate of change of displacement. Velocity is a vector quantity. For instance, it would be easy and correct to say that a car travelling at a steady speed of 50km/h in a direction of N40oE has a velocity of 50km/h, N40oE.
velocity =
Uniform velocity
Fig 6.2 Uniform Velocity
Uniform (constant) velocity: An object is said to undergo (constant) velocity, if the rate of change of displacement is constant, no matter how small the interval may be.
Example 1:
A train moves with a speed of 54km/h for one quarter minute. Find the distance travelled by the train.
Solution:
Speed = 54km/h = 15m/s
Time = ¼ min = ¼ × 60 = 15s
Distance = speed (m/s) × time (s)
= 15(m/s) × 15(s)
= 225m
ACCELERATION & RETARDATION
Acceleration is defined as the increasing rate of change of velocity. It is measured in m/s2.
Acceleration (a) = Increasing Velocity change
Time taken . ……………………………………5.
When the velocity of a moving body increases by equal amount in equal intervals of time, no matter how small the time intervals may be, it is said to move with uniform acceleration.
Retardation is defined as the decreasing rate of change of velocity. It is measured in m/s2.It is also known as deceleration or negative acceleration
Retardation (ar) = Decreasing Velocity Change
Time Taken
EQUATION OF UNIFORMLY ACCELERATED MOTION
S = (v+u) t ………………………………………………………7
2
v = u + at ……………………………………………………….8
v2 = u2 + 2 aS ……………………………………………………….9
S = ut + ½ at2 ……………………………………………………….10
Equations (7) to (10) are called equations of uniformly accelerated motion and could be used to solve problems associated with uniformly accelerated motion
where u- initial velocity( m/s), v – final velocity (m/s), a – acceleration (m/s2), s – distance covered and t – time (m).
Example 2
A car moves from rest with an acceleration of 0.2mls2 . Find its velocity when it has moved a distance of 50m.
Solution:
a = 0.2mls2 , S = 50m, u = 0m/s , v = ?
v2 = u2 + 2 as
v2 = 02 + (2x0.2x50) = 20
v = √20 m/s
EVALUATION
GRAPHS
The motion of an object is best represented or described with graphs. These graphs are
Distance – time
In a distance-time graph, its slope or gradient gives the speed.
(i) Uniform speed (ii) Non-uniform speed
Fig. 6: Distance-time graph
Gradient/slope = speed =
Displacement – time graph
A displacement-time graph could be linear or curved. For a linear graph, the gradient gives the velocity.
Fig. 6.4 Displacement-time graph
Gradients/slope = velocity (v) =
Velocity – time graph
The velocity-time graph is more useful than any of the two graphs described above because it gives more useful information concerning the motion of objects. The following information can be obtained from the graphs (i) acceleration (ii) retardation (iii) distance (iv) average speed.
The motion of objects can form shapes such as square, triangle, trapezium, rectangle or a combination of two or more shapes. Thus, the sum of the areas of the shapes formed corresponds to the distance moved, covered or travelled by the objects.
Example 3
A motor car accelerates for 10secs to attain a velocity of 20m/s. It continues with uniform velocity for a further 20 seconds and then decelerates so that it stops in 20 seconds. Calculate (i) Acceleration (ii) Deceleration (iii) The distance travelled.
20 =
A =
iii) Using area of trapezium
½ × (AB + OC) h = ½ × (20 + 50) 20
= ½ × (70) × 20 = 700m
Example 4
A car starts from rest and accelerates uniformly until it reaches a velocity of 30mls after 5 seconds. It travels with uniform velocity for 15 seconds and is then brought to rest in 10s with a uniform retardation. Determine (a) the acceleration of the car (b) The retardation (c) The distance covered after 5s (d) The total distance covered (use both graphical and analytical method).
The velocity – time diagram for the journey is shown above, from this diagram
= AE / EO
= (30-0) /(5-0)=30/5
= 6mls2
= (0-30) / (30-20) = -30/10
= -3mls2 (the negative sign indicate that the body is retarding)
= ½ x b x h
= ½ x 5 x 30
= 75m
= ½ (AB + OC) AE
= ½ (15 + 30) 30
= 675m.
Using equations of motion.
V = u + t
a = v-u/t = 30 – 0 / 5
a = 30/5 = 6ms-2
a = v – u / t = 0-30 / 10
a = -3 mls2
(c) S = ( u + v) 5
2
= 30 / 2 x 5
= 75m
(d) To determine the total distance travelled, we need to find the various distance for the three stages of the journey and then add them.
for the 1st part S= 75m from (c)
for the 2nd stage where it moves with uniform velocity.
S = vt
= 30 x 15
= 450m
for the last stage S = ½ (u + v) t
= ½ (30 + 0) 10
= 150m.
Total distance = 75 + 450 + 100 = 675m.
EVALUATION
READING ASSIGNMENT
www.google.com (click on google search, type “ distance & displacement ”, click on search) & New school physics by M.W.Anyakoha,Ph D Pg 14 – 18
WEEKEND ASSIGNMENT
(d) (e)
(a) acceleration (b) uniformly velocity (c) uniform speed (d) instantaneous speed
(a) displacement decreases at a constant rate (b) speed is directly proportional to time (c) velocity increases by equal amount in equal time intervals (d) velocity varies inversely with time
THEORY
(i) Sketch a graph of the motion
(ii) Using the graph above, calculate the
(a) Acceleration during the first 5s
(b) Deceleration during the last 10s
(c) Total distance covered through the motion
(i) Calculate the deceleration during the last 5s
(ii) Calculate the acceleration during the first 10s
(iii) Sketch a graph of the motion and calculate the total distance covered throughout the motion.
(i) Acceleration (ii) Retardation (iii) Total distance
(b) Show that the displacement of a body moving with uniform acceleration a is given by S = ut + 1/2at2, where u is the velocity of the body at time t=0
(c) A particle moving in a straight line with uniform deceleration has a velocity of 40m/s at a point P, 20m/s at a point Q and comes to rest at a point R, where QR=50m. Calculate the:
(i) Distance PQ (ii) Time taken to cover PQ (iii) Time taken to cover PR (WAEC, 1990)
(b) State two factors that affect the value of the acceleration due to gravity.(WAEC,2006)
(i) Maximum speed attained during the motion
(ii) Total distance travelled during the first 30s
(iii) Average speed during the same time interval as in (ii) above (WAEC, 2009)
(i) Uniform speed (ii) Variable speed (NECO, 1010)
(b) A body starts from rest and travels distances of 120, 300, and 800m in successive equal time intervals of 12s. During each interval the body is uniformly accelerated.
(i) Calculate the velocity of the body at the end of each successive interval.
(ii) Sketch the velocity- time graph of the motion. (WAEC, 2010)
(b) A body at rest is given an initial uniform acceleration of 8.0ms-2 for 30s after which the acceleration is reduced to 5.0ms-1 for the next 20s. The body maintained the speed attained for 60s after which it is brought to rest in 20s.Draw the velocity-time graph of the motion using the information given above.
(c) Using the graph, calculate the:
(i) Maximum speed during the motion.
(ii) Average retardation as the body is being brought to rest.
(iii) Total distance travelled during the first 50s.
(iv) Average speed during the same interval as in (ii) above ( WAEC, 1991)
(b) State the difference between centripetal and centrifugal force.(NECO, 2011)
(ii)List two physical quantities that can be deduced from a velocity-time graph.
Define the following terms; (a) average speed (b) Instantaneous velocity
(c) A car travels at an average speed of 20ms-1. Calculate the distance covered in 1hour
© Lesson Notes All Rights Reserved 2023