Lesson Notes By Weeks and Term - Junior Secondary School 3

BINARY NUMBERS (BASE 2 NUMBERS)

SUBJECT: MATHEMATICS

CLASS:  JSS 3

DATE:

TERM: 1st TERM

REFERENCE BOOKS

  • New General Mathematics by M. F Macrae et al bk 3
  • Essential Maths by AJS OluwasanmiBk 3

 

 
WEEK THREE

TOPIC: BINARY NUMBERS (BASE 2 NUMBERS)

 

  • Addition in base 2
  • Subtraction in base 2
  • Multiplication & Division in base 2

 

 

ADDITION IN BASE TWO

We can add binary numbers in the same way as we separate with ordinary base 10 numbers. 

 

The identities to remember are:-

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10, 1 + 1 + 1 = 11, 1 + 1 + 1 + 1 = 100

 

Worked Examples

Simplify the following

  1. 1110 + 1001 2.    1111 + 1101 + 101

 

Solutions:

  1. 1110

        +    1001

10111

 

  1. 1111

         + 1101

  101

100001

 

Note: 11 take 1 carry 1 

         10 take 0 carry1

         100 take 0 carry 10

 

EVALUATION

  1. Simplify the following 101 + 101 +111
  2. 10101 + 111

 

ADDITION IN BICIMALS

In bicimals, the binary point are placed underneath each other exactly the same way like ordinary decimals.

 

Example:

  1.     1.1011two +   10.1001two  +  10.01
  2.     10.001two+   101.111

 

Solution:

  1.     1  .  1011

10 .  1001

         10  .0100 

  1. 1000two

 

  1.   101.111

        10.001

1000.000                                 

 

SUBTRACTION IN BASE TWO

The identities to remember on subtraction are: 0 - 0 = 0, 1 - 0 = 1, 10 - 1 = 1, 11 - 1 = 10, 100 - 1 = 11

Worked Examples

Simplify the following:-

(a)    1110 - 1001    (b) 101010 - 111

Solutions:

(a)     1110

        -   1001

   101

(b)    101010

         -       111

      1110

 

SUBTRACTION IN BICIMAL

Example

101.101two – 11.011two

      101.101

        11.011

       10.010two

 

EVALUATION

  1. 10111÷110
  2. 10001 x 11

 

READING ASSIGNMENT

New Gen Maths Book 3, chapter 1 Exercise 1e pg 18 Nos 1-12

Essential Mathematics for J.S.S.3 Pg 8-10

 

WEEKEND ASSIGNMENT

  1. Express 3426 as a number in base 10. (a) 342        (b) 3420    (c) 134
  2. Change the number 10010 to base 10 (a) 18      (b) 34         (c) 40
  3. Express in base two the square of 11 (a) 1001  (b)  1010    (c)  1011
  4. Find the value of (101)2 in base two        (a) 1010  (b) 1111    (c)  1001
  5. Multiply 1000012 by 11                 (a) 1001  (b) 1100011  (c)  10111

 

THEORY

  1. Calculate 1102 x (10112 + 10012 – 1012)
  2. Convert 110111 to base five


© Lesson Notes All Rights Reserved 2023