Lesson Notes By Weeks and Term - Junior Secondary School 2

SOLUTION OF PROBLEMS ON SIMPLE ALGEBRAIC EQUATION

SUBJECT: MATHEMATICS

CLASS:  JSS 2

DATE:

TERM: 1st TERM

 

 
WEEK TEN                    

TOPIC: SOLUTION OF PROBLEMS ON SIMPLE ALGEBRAIC EQUATION

CONTENT

Solving equation by balance method 

Equation with bracket

Equation with fraction.

Solving Equation by Balance Method 

To solve an equation means to find the values of the unknown in the equation that makes it true.

 

For example: 2x – 9 = 15.

2x – 9 is on the left hand side (LHS) and 15 is on the right hand side (RHS) of the equals signs.

 

Worked examples

  1. solve 3x = 12
  2. 2x – 9 = 15.

 

Solution 

1.3x = 12

Divide both sides by 3

    3x   = 12

     3        3

            x = 4.

  1. 2x – 9 = 5

   add 9 to both sides since +9 is the additive inverse of (-9)

   2x – 9 + 9 = 15 + 9

   2x = 24

  x = 24/2  = 12

 

EVALUATION

Use the balance method to solve the following 

(a) 3x – 8 = 10        (b) 20 = 9x + 11    (c ) 10y – 7 = 27    (d) 9 + 2x = 16.

Equation with bracket

Worked example

  1. solve 3(3x – 1)  = 4  ( x + 3)
  2. Solve 5 ( x + 11)  + 2 ( 2x – 5)  = 0

Soluton

  1. 3 (3x – 1)  = 4 ( x + 3)

     9x  - 3  = 4x + 12

Collect like terms:

 9x – 4x = 12 + 3

 5x = 15

x = 15/3

x  = 3

 

  1. 5 (x + 11)  + 2 ( 2x – 5)  = 0

    5x + 55 + 4x – 10  = 0

    collect like terms

  5x + 5x = 10 – 55

  9x  = -45

  x = -45/9

   x  = -5.

 

EVALUATION

Solve the following :

  1. 2 (x + 5) = 18     2. 6 (2s – 7)  = 5s             3.  3x + 1 = 2(3x+5)   
  2. 8 (2d – 3)  = 3 (4d – 7)       5. (y + 8 ) + 2 (y + 1)  = 0.

 

Equation with Fraction

Before collecting like terms in a equation always clear the fraction. To clear fraction, multiply both sides of the equation by the L.C. M. of the denominators of the fraction.

Worked examples

Solve the equations.

  1. 4m  - 2m   = 4

      5         3

 

  1. 3x – 2   - 2x + 7    = 0

       6              9

 

Solution

  1. 4m - 2m  = 4

    5        3

LCM of 5 and 3 is 15. Multiply both sides by 15 

 

15 x 4m    - 15 x 2m    = 15 x 4

        5                   3

 3 x 4m  - 5 x 2m  = 60

12m – 10m = 60

2m = 60

m =60

        2

m = 30.

 

  1. 3x – 2 - 2x + 7  = 0

        6             9

 

The LCM of 6 & 9 is 18. multiply both sides by 18 

18  x (3x – 2)   - 18 (2x + 7 )  = 0

         6                        9

3(3x – 2)  - 2 (2x + 7)  = 0

9x – 6  - 4x – 14 = 0

9x – 4x = 14+ 6

5x = 20

x =20/5

x = 4.

 

EVALUATION

Solve the following equation

  1.   7a - 21   = 0         2. x – 2     = 4       

       2                                                         3

  1.   6m – 3  = 2m+ 1                           4.  -  x      = 2

           7             7                                      2      3

 

READING ASSIGNMENT 

New General Mathematics   chapt. 13 Ex 13d nos 1-20.

 

WEEKEND ASSIGNMENT

  1. Solve 3x + 9 = 117

    (a) 38        (b) 36    (c) -36  (d) -38

  1.   If -2r = 18 what is 4?

     (a) -9        (b) 20        (c) 9   (d) -20

  1. solve 2 (x + 5)  = 16

    (a) 13        (b) 10        (c)  8        (d) 3

  1. Solve = 5    (a) -15        (b) 15      (c) 10        (d) -10

                3

  1. If  = ½  What is x? (a) 2 ½        (b) 2 2/3    (c) -2 ½       (d ) 2.

 

THEORY

  1. Solve the following   (a) 4 (x + 2)  = 2 (3x – 1)    (b) 19y -2 (6y + 1)  = 8
  2. Solve the following:

    (a) 5e – 1  - 7e + 4    = 0

                   4              8

           (b)  2a – 1  - a + 5  = ½ 

                   3             4



© Lesson Notes All Rights Reserved 2023