SUBJECT: MATHEMATICS
CLASS: JSS 2
DATE:
TERM: 1st TERM
WEEK ONE
TOPIC: BASIC OPERATION OF INTEGERS
Definition of Integer
An integer is any positive or negative whole number
Example:
Simplify the following
(+8) + (+3) (ii) (+9) - (+4)
Solution
(+8) + (+3) = +11 (ii) (+9) - (+4) = 9-4 = +5 or 5
Evaluation
Simplify the following
(+12) –(+7) (ii) 7-(-3)-(-2)
Indices
The plural of index is indices
10 x 10 x 10= 103 in index form, where 3 is the index or power of 10. P5=p x pxpxpxp. 5 is the power or index of p in the expression P5.
Laws of Indices
ax x ay = ax+y
E.g. a5xa3=a x a x a x a x a x a x a x a =a8
y1 x y4=y 1+4
= y5
a3 x a5 = a3 + 5 = a8
4c4 x 3c2
= 4 x 3 x c4 x c2 =12 x c4+2=12c6
Class work
Simplify the following
(a) 103 x 104 (b) 3 x 106 x 4 x 102 (c) p3 x p (d) 4f3 x 5f7
Division law
(1) ax ÷ ay = ax ÷ ay = ax-y
Example
Simplify the following
a7-3=a4
(2) 106÷103=106÷103=106-3=103
(3) 10a7÷2a2=10a7÷2a2=5a7-2=5a5
Class work
Simplify the following
Zero indexes
ax ÷ ax =1
By division law ax-x=a0
a0=1
E.g. 1000 =1
500=1
Negative index
a0 ÷ ax = 1/ax
But by division law, a0-x=a-x
Therefore, a-x=1/ax
Example
Solution
b-2 = 1/ b2 (ii) 2-3 = 1/23 = 1/2x2x2 = 1/8
Class work
(1) 10-2 (2) d0 x d4 x d-2 (3) a-3÷a-5 (4) (1/4)-2
(5) [am]n = amxn = amn.
[Power of index]
E.g. [a2]4= x a2 x a2 x a2 = a x a x a x a x a x a x a x a=a8
Therefore. a2x4=a8.
(6) [mn] a=m ax na = mana. e.g. [4+2x] 2=42+22xx2 =
16+4x2=4[4+1xx2] =4[4+x2].
7 Fractional indexes
am/n =a1/n xm=n√ am
Example
(a1/2)2 =a2/2=a1=a
(√a)2=√a x √a =√a x a=√a2=ae.g321/5=5
√321
=1x10-3
=(10-3)3=10-3x3=10-9
= 1 .
1000000000
=0.000000001
e.g. (162)3/4=√ (162)3
= (22)3
(4)3=4x4x4 = 64
Ax=Ay That is x = y
READING ASSIGNMENT
New General Mathematics, UBE Edition, chapter 2 Pages 24-26
Essential Mathematics by A J S Oluwasanmi, Chapter 3 pages 27-29
WEEKEND ASSIGNMENT
(a)7 (b) -7 (c) 19 (d) 8
(a)7 (b)8 (c)9 (d)10
THEORY
6x
© Lesson Notes All Rights Reserved 2023